METODO GRAFICO



Consiste en trazar las rectas que representan gráficamente a las dos ecuaciones lineales. De esta manera las coordenadas del punto de intersección  exis y ye (x, y) de dichas rectas, es la solución del sistema. Por ejemplo, usemos este método para resolver  el siguiente sistema de ecuaciones

En tinta x + y=5
             2x-  y=1

Página 140 del libro representaciones simbólicas y algoritmos

X más ye igual a 5
2 exis menos ye =1

Primer paso: despejar a YE y sustituir valores para EXIS.
Y es igual a 5 menos exis

Segundo paso: asignar valores a EXIS.

x
Y
0
5
1
4
2
3

Cuando exis es 0 ye es igual a 5 menos 0
Cuando exis es 1 ye es igual a 5 menos 1
Cuando exis es 2 ye es igual a 5 menos 2


Tercer paso: despejar ye en la segunda ecuación

Ye es igual a menos 1 más 2 exis

Cuarto paso: asignamos valores para exis en la segunda ecuación
x
Y
0
-1
1
1
2
3
Cuando x es 0 ye es igual a menos 1 más 2(0)
Cuando x es 1 ye es igual a menos 1 más 2(1)
Cuando x es 2 ye es igual a menos 1 más 2(2)



Quinto paso: representamos gráficamente a ambas ecuaciones en el mismo plano cartesiano.






REPRESENTACION GRAFICA DEL SISTEMA DE ECUACIONES





Las rectas se cruzan en el punto (2,3).este punto es la solución del sistema de ecuaciones exis igual a 2,y ye igual a tres.






 
          
PUNTO DE INTERSECCION DEL SISTEMA DE COORDENADAS LA SOLUCION ES EXIS IGUAL A 2 Y YE IGUAL A 3